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Heat transfer in slip flow at low Reynolds number 

By H. C. LEVEY 
Department of Mathematics, University of Western Australia 

(Received 10 January 1959) 

The transfer of heat by forced convection from a hot wire in a low Mach number 
rarefied gas stream is investigated for small Reynolds numbers. A simple expres- 
sion is found for the Nusselt number, and it is suggested that this has reasonable 
validity over a wide range of Knudsen numbers, even into the free-molecule flow 
regime. 

1. Introduction 
The hot-wire anemometer is in extensive use as a means of measuring velocity 

fluctuations, and for quick response the wires used are of very small diameter. 
Thus, in rarefied gases it is quite easy to achieve the condition where the mean 
free path in the gas is comparable with the wire diameter. For example, wires 
of 0.0001 in. diameter are often used; and while this is 40 times the mean free path 
in air at room conditions, it  is about equal to the mean free path in air at apressure 
of 2 cm of mercury and a t  room temperature. 

While molecular effects are significant in such conditions, the Reynolds number 
R based on the wire diameter can be quite small, and this is the case we consider 
here. We are then able to use the Oseen approximation ( 5  3), since convection 
terms are only important at  large distances (Cole & Roshko 1954), and this 
effectively enables us to treat the energy equation without a knowledge of the 
velocity field. The model we take for the wire is an infinite cylinder of circular 
cross-section, so that the flow is two-dimensional; it appears likely from available 
measurements that this is a good approximation in forced convection for wires of 
aspect ratio greater than a few thousand (Collis & Williams 1957). 

The significance of molecular effects is determined by the magnitude of the 
Knudsen number K ,  the ratio of the mean free path in the gas L, to the wire 
diameter d. When K is negligible the gas behaves as a continuum; and when 
it is large, intermolecular collisions are unimportant and the oncoming gas 
molecules are unaffected by the presence of the wire (free-molecule flow). 
Slip flow occurs when K is small but not negligible, and here the mean 
tangential gas velocity is not zero at the wire and the gas temperature at  the 
wire differs from the wire temperature. Finally, there is a so-called transition 
regime between the slip-flow and free-molecule regimes about which little is 
known. 

We work throughout with the Navier-Stokes equations. This has often been 
suggested, for example, by Laitone (1956), but a consideration of the Burnett 
terms led Lin & Street (1954) to regard them as valid if the product of K and the 
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Mach number M is small. Now K may also be expressed in terms of M and R, 
in fact 

very closely, so that on these grounds the Navier-Stokes equations would be 
valid if M2/R is small. We consider only the case when the density and tempera- 
ture perturbations referred to their main-stream values, s and t respectively, are 
small; in $2.1 we show that this again demands that M 2 / R  should be small, and 
accordingly we restrict ourselves to this condition. The present writer nevertheless 
believes, on closer examination of the Burnett terms, that t2/R should also be 
small, which is slightly more restrictive still. Note, however, that under these 
conditions K may still be large. 

In  $2.2 the boundary condition a t  the cylinder-gas interface is considered a t  
some length, and arguments are given to support the use of a simple temperature- 
jump boundary condition when K ranges from zero to large values. Briefly, the 
reasons justifying this are its accordance with the boundary conditions associated 
with the Burnett equations and its a posteriori plausibility-in that order-of- 
magnitude agreement is achieved with the low Mach number free-molecule 
result when K is large. 

The solution for the Nusselt number Nu, the non-dimensional heat transfer 
parameter, is carried through in 5 3 without restriction on the magnitude of K.  
The Oseen approximation to the energy equation together with the temperature- 
jump boundary condition leads to an infinite set of algebraic equations for an 
infinite number of unknown coefficients. Their asymptotic solution for small R is 
obtained and leads to a simple expression for Nu, which of course reduces to the 
continuum result when K is zero, and for large K predicts that Nu is proportional 
to v / K ,  where v is the Prandtl number. This agrees with the free-molecule low 
Mach number result, but in numerical magnitude is out by a factor of about 1.8, 
and it is suggested that our result could be used as an interpolation formula 
between the free-molecule and continuum regimes by adjustment of the value of 
the ‘jump’ parameter. It may be added that our result shows that the continuum 
result would be seriously in error when K = O(1og [8/vR]). 

2.1. The governing equations 
Let p ,  p, T be the pressure, density and temperature in an ideal gas which flows 

steadily past a body, and denote by p,,p,, T, their values at a large distance 
where the flow is uniform in the xl direction with speed U .  We define 

K = dya2-tM/R (1.1) 

s = (P - PaJlPm,  t = (T- 5%)/5%, p = (P -Pm)l(Pm VZ) ,  (2.1) 

and suppose that s and t are small compared with unity. If ui are the non- 
dimensional velocity components referred to U ,  and the xi are non-dimensional 
Cartesian co-ordinates referred to a typical body dimension, then the Navier- 
Stokes equations become, when terms of order s, t are neglected compared with 
terms of order unity, aui/ax, = o, ( 2 . 2 )  

ujaui/axj = - aP/axi + R - ~ V Z ~ ~ ,  (2.3) 
ujatlaxj - w v - w  = (7 - 1) i n j a P / a x j  + R-~(Y - i ) i w ( a U i / a Z j  + au,/ax,)2, (2.4) 

and s+t = y W P ,  (2.5) 
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where R is the Reynolds number referred to the typical body dimension, c is the 
Prandtl number, y is the ratio of specific heats, and M is the Mach number at 
infinity. It is consistent here to suppose that the thermal conductivity and the 
viscosity are constant. Note that (2.2) and (2.3) are the usual ‘incompressible’ 
equations which are independent of the temperature distribution, so that (2.4) is 
linear. The inhomogeneous terms are retained because t is not necessarily large 
compared with M2.  

We suppose now that R is small, so that we expect P to be of order R-l roughly 
(for two-dimensional continuum flow past a circular cylinder it is of order 
R-lllog (R-1) (Lamb 1945)); and hence if s and t are to be small then, from (2.5), 
M2R-1 must be small. However, MR-1 may still be large. 

2.2. The boundary conditions 
We intend to use the well-known argument (Cole & Roshko 1954) that, because 

convection terms are small near the body and become dominant at  large distances 
where the velocity is uniform (that is, the term Rvuj a8/axj is only important when 
uj - (1, O ) ) ,  then no knowledge of the velocity field is needed to find a first approxi- 
mation to solutions of the energy equation; and thus we shall only consider 
boundary conditions for t. (If this argument is applied when the perturbations 
t and s are not small, however, equation (2.4) is still non-linear due to the dissipa- 
tion terms.) 

From now on we shall be concerned with two-dimensional flow past a circular 
cylinder, and will take the cylinder radius as the typical length. However, by 
convention the Reynolds number will now be referred to the cylinder diameter, 
so that in the previous equations R is replaced by 4R. Further, we will work in 
terms of plane polar co-ordinates (r,  8) with 

x1 = r cos 6, x2 = r sin 8. (2 .6 )  

As boundary conditions on t ,  we have 

t+O when r+m, 

and at the cylinder surface, r = 1, we will impose the temperature-jump condition 

T, - T, = g aqjar, (2.8) 

where T, is the gas temperature a t  the wall, T, is the wall temperature and g is a 
‘jump distance’. An explicit value for g often quoted, for example by Lin & 
Street (1954) and by Collis & Williams (1958)) is 

2 - a  4cy L 
g = y y S . l ; ,  

where L is the mean free path (evaluated at Tm to our order of approximation), 
a is the accommodation coefficient, usually in the neighbourhood of 0.9 for 
platinum-air interfaces, and cis a constant which depends on the molecular model 
chosen, but is anyway very close to 0.5. The derivation is referred back to Kennard 
(1938)) although he took some pains to point out that T, and aT,/ar do not refer to 
actual gas temperatures and their derivatives a t  the wall in his derivation. Never- 
theless (2.8) and the equivalent of (2.9) appear as the significant part of the 
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boundary condition for the Burnett equations (Lin & Street 1954), provided that 
M K  and tK are small even though K is not. If account is taken of (2.5) and the 
remarks at the end of 52.1, these Conditions together with those quoted in the 
introduction for the validity of the Navier-Stokes equations would allow M to be 
as great as R2, for example, and hence K to be of order R-&. 

We intend then to adopt the boundary condition (2.8) for both small and large 
values of K ,  with g given by (2.9), although perhaps the variation of g with c-lL 
may be taken with less reserve than the remaining factor. Further grounds for the 
plausibility of this boundary condition are that it produces some aspects of free- 
molecule theory when K becomes large, in that the gas temperature tends to 
become independent of the wall temperature, and certainly the predicted Nusselt 
number in this case is of the right order of magnitude when compared with that 
given by free-molecule theory. 

In  terms of the non-dimensional temperature, the boundary condition becomes 

(2.11) 

3. The heat transfer 
The energy equation now has the form 

v2t - + ~ R U ,  atlax, = - c ~ 2 ~ ( ~ ~ ,  x2) ,  (3.1) 

where x is a known function of x1 and x2, and the boundary conditions are (2.7) 
and (2.10). Let t(l) be the temperature field satisfying (3.1) for which the total heat 
transfer from the cylinder is zero and the cylinder has the constant temperature 
T,, the equilibrium temperature, and let t(2) be the corresponding temperature 
field when the cylinder is at constant temperature T'. Then 

t(3) = t ( 2 )  - t(l) 

satisfies vw3) - zhui a t y a x i  = 0, 

where h = &R, 

and also satisfies the boundary conditions (2.7) and 

t(3)(1, e )  - (t,- t,) = h(at(3)/a~),,~. (3.5) 

If Q is the total thermal flux from the cylinder, then this together with the 
contribution from the source field c M 2 x  must appear at  infinity. Thus, if C is a 
very large circle surrounding the cylinder, Q together with the contribution from 
the source field must equal the rate of thermal transfer across C by conduction 
and convection, that is 

while 

where k is the thermal conductivity and u, is the outward normal velocity com- 
ponent on C. 
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Thus 

Of course, it  is obvious from these expressions that equation (3.1) commits us to 
take the thermal flux from the cylinder as - k(aT/ar),,,. 

Let us finally change the dependent variable to 

q5 = t'3'/(t,-te), (3.6) 

and then with the Oseen approximation we have 

and 

while 

(3.8) 

(3.9) 

(3.10) 

where Nu is the Nusselt number. 
We follow Cole & Roshko (1954) and let 

q5 = $ exp (hr cos O), (3.11) 

so that in terms of $ V2$- h 2 $  = 0, 
with boundary conditions 

(3.13) 

$exp (hr cos 0) -+ 0 when ( r  --f 00) (3.13) 

and (3.14) 

Since $ must be symmetrical about the x1 axis, the appropriate solution which 
meets the boundary condition of infinity is of the form 

( 1  - hh cos 0) - exp ( - h cos 8) = h(a$/&),=,. 

W 

$ = ~AnKn(hr )cosn8 ,  
0 

and from (3.10) 

(3.15) 

W 

Nu = lim "s,"n exp (hr cos 0) C A,(K,(hr) cos no cos 19 - KA(hr) cos &}do. 
r+w n = O  

If we use the relation 

2nIn(z) = cos no exp (Z cos 0) dB (3.16) sea, 
and the known asymptotic forms for I,(z) and Kn(z), this reduces to 

W 

Nu = 2XAn.  
0 

(3.17) 

It remains now to satisfy the boundary condition (3.14) at the cylinder wall, and 
since W 

we arrive at the set of equations 

exp ( - h cos 8) = Io(h) + 3 C ( - l)nIn(h) cos no, 
n = l  

(3.18) I [KO@) - hhKA(h)] A,  - &hhK,(h) A,  = Io(h), 

- &hhK,(A) A ,  + [K,(h) - hhKi(h)] A ,  - &hhK,(h) A ,  = 21,(h), 

-hhKi',(h) A0 + [K,(h) - hhK;(h)] A ,  - +hhK2(h) A ,  = - 211(h), 

etc. 
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We propose to discuss the asymptotic solution of this infinite set of equations for 
small h by considering the first N ,  say, where N is large, and then allowing N to 
become infinite. 

The determinant A of the finite set is a continuant whose diagonal terms, super- 
diagonal terms and subdiagonal terms are now denoted by a,, b,, c,, respectively, 

I 
where 

a, = K,-,(h) -hhK;-,(h) (n 2 I ) ,  

b, = -&hhK,(h), (n 2 2), 

c1 = -hhK,(h), 

and cn = - &x,-l(h), (n 2 2). 

Then by CramBr's rule we have 

bl = hhKl(h), 

AmA = Dm+l, 

(3.19) 

(3.20) 

where D, is the determinant obtained by replacing the nth column of A by the 
column with elements d, defined by 

(3.21) 

Now, since A is a continuant, it is easy to show that if a non-diagonal element, 
say b,, occurs in a term of its expansion, then c, must also occur. If we then take 
account of the behaviour of I,(h) and K,(h) for small A, it is possible to show that 
the dominant term in the expansion of A is given by the product of the diagonal 
elements, and in fact 

where 

N 

A = d=, KI am) ( I + € ) ,  

E = O(A2 log A )  if h-1 = o( l ) ,  

= O(h2) if h = O(l) ,  
= O(h2h2) if h = o(1). 

(3.22) 

(3.23) 

A discussion of the determinants D, proceeds similarly although with rather more 
complication, and we can show that 

and 
for all h. 

Hence 

and 

D,/Dl = O(h2"-210gh) (n 2 2),  

alA, = dl(l + E ) ,  

2 A ,  = Ao(l  +e). 
N 

n=O 

Thus, finally, for small h and uniformly for all h, 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 
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where I' (+  0.5772) is Euler's constant. In  terms of the Reynolds number this 
result may be written 

iqp= +h - +r + 3 log (SC-~R-*) 

= @+N,-,l, 

where N, is the continuum result of Cole & Roshko. 
When h is large, 

Nu N 2h-1 

(3.29) 

(3.30) 

The low Mach number free-molecule result for a diatomic gas is (Stalder, Goodwin 
& Creager 1951) 

3 y - 1  a 
2 y K'  Nu N - ~ a- (3.31) 

so that although (3.30) predicts the correct variation with u- and K the accom- 
panying factor is too large by a factor of about 1.8. However, in view of the 
assumptions made, this is quite reasonable, and it is plausible that (3.29) would 
provide a reasonable interpolation formula between the free-molecule regime and 
continuum flow if h was redehed to make (3.30) and (3.31) agree. For there are 
only strong grounds for accepting the original definition of h, i.e. equation (2.1 l), 
in a range of K where the continuum result is not greatly affected. 

It is interesting to note that on other grounds Collis & Williams (1958) have 
attempted to fit an empirical expression of similar type to available experimental 
results for larger Reynolds numbers than those considered here, and have to take 
the rather unrealistic value of 0.695 for a in (2.11) (which reduces the above 
discrepancy to a factor of 1.18). 

The writer wishes to thank Dr D. C. Collis, AeronauticalResearchLaboratories, 
Melbourne, for drawing his attention to this problem and forvaluablediscussions. 
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